PROGRAM:
clc
% Matrix of size 1*3
a=[2 3 4]; b=[5 6 8];
% Square matrix of size 3*3
A=[8 -6 2; -6 7 -4; 2 -4 3];
B=[1 1 3; 1 5 1; 3 1 1];
C=[1; 2; 3]
% Addition of a matrix
disp("Addition of a Matrix :")
c=a+b
% Subtraction of a matrix
disp("Subtraction of a Matrix :")
d=a-b
% Scalar Multiplication of a matrix
disp("Scalar Multiplication of a Matrix :")
e=A*B
%ee=a*b
%eee=a.*b
% Array Multiplication of a matrix
disp("Array Multiplication of a Matrix :")
f=a.*b
g=A.*B
% Determinant of a matrix
disp("Determinant of a Matrix :")
h=det(A)
aa=det(B)
% Inverse of a matrix
disp("Inverse of a Matrix :")
%ab=inv(A)
aab=inv(B)
% adjoint of a matrix
yy=adjoint(A)
% Transpose of a matrix
yyy=B'
% Trace of a matrix
xy=trace(B)
px=trace(A)
___________________________________
PROGRAM:
clc
% Square matrix of size 3*3
A=[8 -6 2; -6 7 -4; 2 -4 3];
B=[1 1 3; 1 5 1; 3 1 1];
% Rank of a matrix
disp("Rank of a Matrix :")
Rank_of_A=rank(A)
Rank_of_B=rank(B)
________________________________________
PROGRAM:
clc
% Square matrix of size 3*3
clc
A = [8 -6 2; -6 7 -4; 2 -4 3];
disp("Matrix A:");
disp(A);
% Eigenvalues and right eigenvectors of matrix A
[V,D] = eig(A);
disp("Eigenvalues of matrix A:");
disp(D);
% Eigenvector need not be uniqie
disp("Eigenvectors of matrix A:")
disp(V);
____________________________________________
PROGRAM:
clc
% syms means a cell array of the names of all symbolic scalar variables, functions, matrix
variables, matrix functions, and arrays.
syms x y
F=x^2+2*y^2-22;
diff(F,x)
diff(F,y)
diff(F,x,y)
syms x y
disp("Partial derivatives of a f(x) = x^2+2*y^2-22 :")
f=x^2+2*y^2-22;
P=diff(f,x)
Q=diff(f,y)
subs(P+Q,{x,y},{1.5,2})
% Partial Derivative of function f(x) w.r.t variable t.
syms x t;
disp("Derivative of f(x,t) = sin(x*t) w.r.t t:");
f = sin(x*t);
ft = diff(f,t)
syms x t;
disp("Derivative of f(x,t) = cos(x*t)*sin(x*t) w.r.t t:");
f = cos(x*t)*sin(x*t);
ft = diff(f,t)
% k-Order Partial Derivative of function f(x) w.r.t variable x.
syms x n;
disp("k-Order Partial Derivative of f(x,n)=x^n wrt x:");
f = x^n;
% 2 -> repesent tow times of derivatives.
% if say 3 -> repesent three times of derivatives.
d2 = diff(f,x,2)
d5 = diff(f,x,5)
%Another way
syms x y
F = sin(x) + cos(y);
gradient(F, x)
gradient(F,[x,y])
syms x y
F = sin(x)*cos(y);
gradient(F,x)
gradient(F,[x,y])
gradient(F,[y,x])
syms x y z
F = sin(x) + cos(y)- exp(z);
gradient(F,[x,y,z])
___________
PROGRAM:
clc
%Find stationary points of a f(x,y)=(x^3)*(y^2)*(12-x-y).
syms x y
% Derivative of function f(x,y) w.r.t variable x and y
a = (x^3)*(y^2)*(12-x-y);
eqn_fx = diff(a,x)
eqn_fy = diff(a,y)
M = solve(eqn_fx,eqn_fy)
Stationary_Points = [M.x,M.y]
%Find stationary points of a f(x,y)=x^3+y^3-3x-12y+20.
syms x y
% Derivative of function f(x,y) w.r.t variable x and y
a = (x^3)+(y^3)-(3*x)-(12*y)+20;
eqn_fx = diff(a,x)
eqn_fy = diff(a,y)
M = solve(eqn_fx,eqn_fy)
Stationary_Points = [M.x,M.y]
______________________
PROGRAM:
clc
syms x y
% Function
F=exp(x)*cos(y);
T1 = taylor(F, [x, y], [0 0], 'order', 4)
% Function
F=exp(x)*cos(y);
T2 = taylor(F, [x, y], [0 pi/2], 'order', 4)
% Function
F=exp(2*x)*sin(y);
T3 = taylor(F, [x, y], [0 0], 'order', 3)
__________________
PROGRAM:
clc
%Evaluate
syms x y
firstint=int(1,x,0,2)
answer=int(firstint,y,0,2)
%Evaluate
syms x y
firstint=int(x.^2+y.^2,y,1,x^2)
answer=int(firstint,x,1,2)
%Evaluate
syms x y
firstint=int(1-6*x^2*y,x,0,2)
answer=int(firstint,y,-1,1)
%Evaluate
syms x y
firstint=int(x^2+y^2,x,0,1-y)
answer=int(firstint,y,0,1
_________________
PROGRAM:
clc
%Find the Area of the double integral
%Area between the parabola y=x^2 and straight line y=x
syms x y
firstint=int(1,y,x^2,x)
Area=int(firstint,x,0,1)
%Find the Area of the double integral
%Area of the first quadrant of the circle x^2+y^2=1
syms x y
firstint=int(1,x,0,sqrt(1-(y^2)))
Area=int(firstint,y,0,1)
%Find the Area of the double integral
% Area between the parabola y=x^2 and straight line y=1.
syms x y
firstint=int(1,y,1,x^2)
Area=int(firstint,x,1,2)
____________
PROGRAM:
clc
%Evaluate
fun = @(x,y,z) x+y.^2;
zmin = -1; %z limits
zmax = 5;
ymin = 2; %y limits
ymax = 4;
xmin = 0; % x limits
xmax = 1;
result = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax)
%Evaluate
syms x y z
firstans=int(int(int(x*y*z,z,0,3-x-y),y,0,3-x),x,0,3)
%Evaluate
fun = @(x,y,z) x.*cos(y) + x.^2.*cos(z)
xmin = -1;
xmax = 1;
ymin = @(x)-sqrt(1 - x.^2);
ymax = @(x) sqrt(1 - x.^2);
zmin = @(x,y)-sqrt(1 - x.^2 - y.^2);
zmax = @(x,y) sqrt(1 - x.^2 - y.^2);
q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax,'Method','tiled')
%Evaluate
a = 2;
f = @(x,y,z) 10./(x.^2 + y.^2 + z.^2 + a);
format long
Result = integral3(f,-Inf,0,-100,0,-100,0)
______________
PROGRAM:
clc
% Find the volume of tetrahedron formed between coordinate planes and the
% plane using triple integration where a, b, c are constants.
intercepts = input("For the plane x/a+y/b+z/c = 1, enter values of a,b,c in the form [a b c]: ");
a = intercepts(1);
b = intercepts(2);
c = intercepts(3);
volume = @(x,y,z) ones(size(x));
xmin = 0; xmax = a;
ymin = 0; ymax = @(x) b*(1-x/a);
zmin = 0; zmax = @(x,y) c*(1-y/b-x/a);
% You can crosscheck that the volume is correct using the formula for
% volume for tetrahedron i.e. (1/3) x (Area of base triangle) x (Height)
% V = (1/3)*((1/2)*a*b)*c;
V = integral3(volume,xmin,xmax,ymin,ymax,zmin,zmax);
V = abs(V);
disp(V);
____________
Comments
Post a Comment